Back
1 . The function $f : \mathbb{N} \rightarrow \mathbb{N}$ is defined by $$ \begin{align} f(0) &= 8 \\ f(n) &= f(n - 1) + 6n - 8\; \ \mathrm{for}\ n \geq 1 \end{align} $$ What is $f(n)$?
(a)
$f(n) = 2n^{2} - 5n + 8$
(b)
$f(n) = 2n^{2} - 5n + 7$
(c)
$f(n) = 3n^{2} - 5n + 8$
(d)
$f(n) = 4n^{2} - 5n + 8$