Back
1 . Consider the following recursive function:
$f(0)$ $\;=\;$ $3,$
$f(n + 1)$ $\;=\;$ $f(n) + 10n + 2\; \ \text{for all}$ $\text{integers}\ n \geq 0.$
Which of the following is true?
(a)
for all $n \geq 0$: $f(n) = 5n^{2} - 3n + 3$
(b)
for all $n \geq 0$: $f(n) = 5n^{2} - 2n + 3$
(c)
for all $n \geq 0$: $f(n) = 5n^{2} - 3n + 2$
(d)
for all $n \geq 0$: $f(n) = 5n^{2} + 3n + 3$