Back
1 . Let $S$ be a set of size 37, and let $x$, $y$, and $z$ be three distinct elements of $S$. How many subsets of $S$ are there that contain $x$ and $y$, but do not contain $z$?
(a)
$2^{33}$
(b)
$2^{35}$
(c)
$2^{34}$
(d)
$2^{37} - 2^{35} - 2^{36}$