Back
1 . Consider the following recursive function:
$f(0) = $ $7,$
$f(n) = $ $2 \cdot f(n - 1) + 1\; \ \text{for all}$ $\text{integers}\ n \geq 1.$
Which of the following is true?
(a)
$f(n) = 4n^{2} + 4n + 7$
(b)
None of the above.
(c)
$f(n) = 2^{n+3} - 1$
(d)
$f(n) = 8n + 7$