Back
1 . Consider the following recursive function:
  • f(0) = $1$,
  • f(n) = $\frac{5}{n} \cdot f(n - 1)\; \ \text{for all}$ $\mathrm{integers}\ n \geq 1$.
Which of the following is true for all $n \geq 0$?
(a)
$f(n) = \frac{5^{n}}{(n+1)!}$
(b)
$f(n) = \frac{5^{n+1}}{n!}$
(c)
$f(n) = \frac{5^{n}}{n!}$
(d)
$f(n) = \frac{5}{n!}$