Back
1 . You are given 20 beer bottles $B_1,B_2,\dots,B_{20}$ and 30 cider bottles $C_1,C_2,\dots,C_{30}$. Assume you arrange these 50 bottles on a horizontal line such that
  • the leftmost 10 bottles are all beer bottles, and
  • the rightmost 10 bottles are all cider bottles.
How many such arrangements are there? (The order of the bottles matters.)
(a)
${20 \choose 10} \cdot 10! \cdot {30 \choose 10} \cdot 10! \cdot 30!$
(b)
$50!$
(c)
${20 \choose 10} \cdot 10! \cdot {30 \choose 10} \cdot 10!$
(d)
${20 \choose 10} \cdot {30 \choose 10} \cdot 30!$