Back
1 . The functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ are recursively defined as follows: $$ \begin{alignat}{2} f(0) &= 0, \\ f(n) &= 2 + f(n - 1)\ \; &\mathrm{if}\ n \geq 1, \\ g(0) &= 1, \\ g(n) &= 7 \cdot g(n - 1)\ \; &\mathrm{if}\ n \geq 1. \end{alignat} $$ For any integer $n \geq 0$, what is $g(f(n))$?
(a)
$(2n)^{7}$
(b)
$7^{n}$
(c)
$7^{2n}$
(d)
$n^{7}$