Home
Evaluations
Tags
Lectures
Sandbox
About
Contribute
Evaluations
Tags
Lectures
About
Back
1 . The function $f : \mathbb{N} \rightarrow \mathbb{N}$ is recursively defined as follows: $$ \begin{align} f(0) &= 2 \\ f(n) &= 3 \cdot f(n - 1) + 1, \text{ if } n \geq 1 \end{align} $$ Which of the following is true for all integers $n \geq 0$?
(a)
$f(n) = \frac{3}{2} \cdot 3^n - \frac{1}{2}$
(b)
None of the above.
(c)
$f(n) = \frac{5}{2} \cdot 3^n - 1$
(d)
$f(n) = \frac{5}{2} \cdot 3^n - \frac{1}{2}$
Submit
Refresh