$\newcommand{\ThreeHeadsOrThreeTails}{{\rm T {\scriptsize HREE} H {\scriptsize EADS} O {\scriptsize R} T {\scriptsize HREE} T {\scriptsize AILS}}}$
Consider the following recursive algorithm $\ThreeHeadsOrThreeTails$, which takes as input a positive integer $k$:
  $\mathbf{Algorithm}$ $\ThreeHeadsOrThreeTails(k)$: 
  $\quad \text{flip a fair coin three times};$ 
  $\quad \mathbf{if}\ \text{the result is $HHH$ or $TTT$}$ 
  $\quad \quad \mathbf{then}\ \mathrm{return}\ k$ 
  $\quad \mathbf{else}$ 
  $\quad \quad \ThreeHeadsOrThreeTails(k + 1)$ 
  $\quad \mathbf{endif}$
You run algorithm $\ThreeHeadsOrThreeTails(1)$, i.e., with $k = 1$. Define the random variable $X$ to be the value of the output
of this algorithm. What is the expected value of $X$?