$\newcommand{\Heads}{{\rm H \scriptsize EADS}}$
		
		
		Consider a coin that comes up heads with probability 1/3 and, thus, tails with probability 2/3.
		Consider the following recursive algorithm $\Heads$, which takes as input a positive integer $k$:
		
		
			$\mathbf{Algorithm}\ \Heads(k)\mathrm{:}$ 
			
				
					
						| $//$ | $\text{all coin flips made}$ $\text{are mutually independent}$ | 
				
			
			$\text{flip the coin};$ 
			$\mathbf{if}\ \text{the coin came up heads}$ 
			$\mathbf{then}\ \mathrm{return}\ k + 1$ 
			$\mathbf{else}\ \Heads(k + 1)$ 
			$\mathbf{endif}$
		
		
		You run algorithm $\Heads(1)$, i.e., with $k = 1$. Define the random variable $X$ to be the value of
		the output of this algorithm. Let $m \geq 1$ be an integer. What is $\Pr(X = m + 1)$?