Back

Question: 2015 Winter Final - 10

Author: Michiel Smid
Let $S$ be the set of ordered pairs of integers that is recursively defined in the following way:
  • $(1,6) \in S$.
  • If $(a,b) \in S$ then $(a+3, b+4) \in S$.
  • If $(a,b) \in S$ then $(a+5, b+2) \in S$.
Which of the following is true?
(a)
$S = \{(a,b) : a > 0$ and $b > 0$ are integers and $a + b$ is divisible by 7$\}$.
(b)
None of the above.
(c)
For every element $(a,b)$ in $S$, $a + b$ is divisible by 7.
(d)
For every element $(a,b)$ in $S$, $a + b$ is not divisible by 7.