Home
Evaluations
Tags
Lectures
Sandbox
About
Contribute
Evaluations
Tags
Lectures
About
Back
Question:
2015 Winter Final - 8
Author: Michiel Smid
Consider the following recursive function:
f(0) = $7$,
f(n) = $f(n - 1) + 6n - 3\; \ \text{for all}$ $\mathrm{integers}\ n \geq 1$.
Which of the following is true??
(a)
For all $n \geq 0$: $f(n) = 4n^2 + 7$
(b)
For all $n \geq 0$: $f(n) = 3n^2 + 7$
(c)
None of the above.
(d)
For all $n \geq 0$: $f(n) = 2n^2 + 7$
COMP 2804: Discrete Structures II
COMP 2804 Final Exam
Recursive Functions (4.1)