Let $B$ be a set consisting of 45 bottles. Out of these, 17 are beer bottles, and the remaining 28
		are cider bottles. Consider subsets of $B$ that contain
		
			- 
				exactly 5 beer bottles and zero or more cider bottles,
			
		or
		
			- 
				exactly 5 cider bottles and zero or more beer bottles.
			
		How many such subsets are there?
    
(a)
 $ {17 \choose 5} \cdot 2^{28} + 2^{17} \cdot {28 \choose 5} $
   
(b)
 $ 2^{45} - {17 \choose 5} \cdot {28 \choose 5} $
   
(c)
 $ 2^{45} - {17 \choose 5} - {28 \choose 5} $
   
(d)
 $ {17 \choose 5} \cdot 2^{28} + 2^{17} \cdot {28 \choose 5} - {17 \choose 5} \cdot {28 \choose 5} $