Back

Solution: 2013 Fall Midterm - 4

Author: Pat Morin

Question

In a group of 20 people,
  • 6 are blond,
  • 7 have green eyes,
  • 11 are not blond and do not have green eyes.
How many people are blond and have green eyes?
(a)
$4$
(b)
$3$
(c)
$5$
(d)
$9$

Solution

Okay, so let’s write down what we know

  • A = blond
    $ |A| = 6 $
  • B = green eyes
    $ |B| = 7 $
  • It also says "11 are not blonde and do not have green eyes"
    They could be blonde and not have green eyes, green eyes and not blonde, or neither.
    Basically, 11 people are outside the intersection of A and B
    $ |\overline{A \cap B}| = 11 $

We should find the union of A and B

$ | A \cup B | = 20 - 11 = 9 $

Now, let’s use a formula to find the intersection of A and B

$ | A \cup B | = |A| + |B| - |A \cap B| $

$ 9 = 6 + 7 - |A \cap B| $

$ |A \cap B| = 4 $