Back

Solution: 2013 Fall Midterm - 9

Author: Pat Morin

Question

Which of the following is true?
(a)
$\sum_{k=0}^{n} 4^{n-k}5^{k}{{n}\choose{k}} = 8^{n}$
(b)
$\sum_{k=0}^{n} 5^{k}{{n}\choose{k}} = 5^{n}$
(c)
$\sum_{k=0}^{n} 4^{k}5^{n-k}{{n}\choose{k}} = 20^{n}$
(d)
$\sum_{k=0}^{n} 5^{k}{{n}\choose{k}} = 6^{n}$

Solution

It’s obvious which one is right BUT let’s make it clear by going through every single one of them just in case and seeing what they come out to

a.

$\sum_{k=0}^{n} 4^{k}5^{n-k}{{n}\choose{k}} = 20^{n}$

${(4+5)}^n = {20}^n$

$9^n = {20}^n$

b.

$\sum_{k=0}^{n} 5^{k}{{n}\choose{k}} = 6^{n}$

$\sum_{k=0}^{n} \binom{n}{k} (1)^{n-k} (5^k) = 6^n$

${(1+5)}^n = 6^n$

$ 6^n = 6^n$

c.

$\sum*{k=0}^{n} 5^{k}{{n}\choose{k}} = 5^{n}$

$\sum*{k=0}^{n} \binom{n}{k} (1)^{n-k} (5^k) = 5^n$

${(1+5)}^n = 5^n$

$ 6^n = 5^n$

d.

$\sum_{k=0}^{n} 4^{n-k}5^{k}{{n}\choose{k}} = 8^{n}$

$ {(4+5)}^n= 8^{n}$

$ 9^n= 8^{n}$