$f(0) = $ | $-17,$ |
$f(n) = $ | $f(n - 1) + 8n - 2\; \ \text{for all}$ $\text{integers}\ n \geq 1.$ |
Let’s calculate $f(1)$ first
$f(1) = f(0) + 8 \cdot 1 - 2 $
$f(1) = -17 + 8 - 2 $
$f(1) = -11 $
The correct answer is $ f(n) = 4n^{2} + 2n - 17 $ because it is the only one that gives the correct value for $ f(1) $