Home
Evaluations
Tags
Lectures
Sandbox
About
Contribute
Evaluations
Tags
Lectures
About
Back
Solution:
2015 Fall Final - 10
Author: Michiel Smid
Question
What is the number of bitstrings of length $n$ that contain 00 or 11?
(a)
$2 \cdot n \cdot 2^{n-1}$
(b)
$2^n - 2$
(c)
$2^n - 4$
(d)
$2 \cdot (n-1) \cdot 2^{n-2}$
COMP 2804: Discrete Structures II
COMP 2804 Final Exam
Counting Bitstrings of Length n (3.1.1)
The Complement Rule (3.3)
Solution
Let S be the set of all bitstrings of length $n$.
$ |S| = 2^{n} $
Let A be the event that a string does not contain 00 or 11.
The strings are only $1010...10$ or $0101...01$.
$ |A| = 2 $
Now, we exclude the strings that do not contain 00 or 11
$ |S| - |A| = 2^{n} - 2 $
Contribute