For each $i = 1,2,\dots,n$, let $v_i$ be the value (in dollars) of the gift that student $S_i$ buys. Let $Y$ be the value of the gift that student $S_1$ receives, and let $Z$ be the value of the gift that student $S_2$ receives. What is $\mathbb{E}(2 \cdot Y - Z)$?
Okay. This is a loaded question, so let’s break it down
$ \mathbb{E}(2 \cdot Y - Z) $
$ = \mathbb{E}(2 \cdot Y) - \mathbb{E}(Z) $
$ = 2 \cdot \mathbb{E}(Y) - \mathbb{E}(Z) $
$ = 2 \cdot \frac{1}{n} \sum_{i=1}^{n} v_i - \frac{1}{n} \sum_{i=1}^{n} v_i $
$ = \frac{2}{n} \sum_{i=1}^{n} v_i - \frac{1}{n} \sum_{i=1}^{n} v_i $
$ = \frac{2 - 1}{n} \sum_{i=1}^{n} v_i $
$ = \frac{1}{n} \sum_{i=1}^{n} v_i $
$ = \sum_{i=1}^{n} \frac{v_i}{n} $