Back

Solution: 2015 Fall Final - 3

Author: Michiel Smid

Question

How many bitstrings $s_1s_2 \dots s_{20}$ of length 20 have the property that $s_1s_2s_3 = 000$ or $s_2s_3s_4 = 000$?
(a)
$2^{17} - 2^{15}$
(b)
$2^{18} - 2^{16}$
(c)
$2^{18} - 2^{17}$
(d)
$2^{17} - 2^{16}$

Solution

  • Let A be the event that $s_1s_2s_3 = 100$.
    The first 3 bits are fixed: 1 0 0.
    The remaining 17 bits can be any combination of 0s and 1s: $2^{17}$.
    $ |A| = 2^{17} $
  • Let B be the event that $s_2s_3s_4 = 000$.
    The bits are fixed: 0 0 0.
    The remaining 17 bits can be any combination of 0s and 1s: $2^{17}$.
    $ |B| = 2^{17} $
  • Let $A \cap B$ be the event that $s_1 s_2 s_3 s_4= 10000$
    The bits are fixed: 1 0 0 0.
    The remaining 16 bits can be any combination of 0s and 1s: $2^{16}$.
    $ |A \cap B| = 2^{16} $

$ |A \cup B| = |A| + |B| - |A \cap B| $

$ |A \cup B| = 2^{17} + 2^{17} - 2^{16} $

$ |A \cup B| = (1+1) \cdot 2^{17} - 2^{16} $

$ |A \cup B| = 2 \cdot 2^{17} - 2^{16} $

$ |A \cup B| = 2^{18} - 2^{16} $