$ = \sum^{20}_{k=0} \binom{20}{k} {(-3x)}^{n-k} {(5y)}^{k} $
We only consider $k=5$, as it results in $y^{5}$.
$ = \binom{20}{5} \cdot {(-3x)}^{20-5} \cdot {(5y)}^{5} $
$ = \binom{20}{5} \cdot {(-3)}^{15} \cdot {5}^{5} \cdot x^{15} \cdot y^5 $
$ = - \binom{20}{5} \cdot {3}^{15} \cdot {5}^{5} \cdot x^{15} \cdot y^5 $
Thus, the coefficient of $x^{15}y^{5}$ in the expansion of ${(-3x + 5y)}^{20}$ is $ - \binom{20}{5} \cdot {3}^{15} \cdot {5}^{5} $