Let S be the set of all possible 20-element subsets of S.
We simply choose 20 elements from the 100 elements in $S$: $ \binom{100}{20} $
$ |S| = \binom{100}{20} $
Let B be the event that none of the elements in the subset is positive.
The number of ways to choose 20 negative elements from the 70 negative elements in $S$: $ \binom{70}{20} $
$ |B| = \binom{70}{20} $
$ Pr(B) = \frac{\binom{70}{20}}{\binom{100}{20}} $
Let A be the event that at least one of the elements in the subset is positive.
$ Pr(A) = 1 - Pr(B) $
$ Pr(A) = 1 - \frac{\binom{70}{20}}{\binom{100}{20}} $