Home
Evaluations
Tags
Lectures
Sandbox
About
Contribute
Evaluations
Tags
Lectures
About
Back
Solution:
2015 Winter Final - 17
Author: Michiel Smid
Question
Consider a uniformly random bitstring of length 5. Define the events
A = "the bitstring contains exactly two 0s",
B = "the bitstring contains an even number of 0s".
(Note that zero is even.) What is the conditional probability $\Pr(A|B)$?
(a)
$\left. 2^5 \middle/ {5 \choose 2} \right.$
(b)
$\left. {5 \choose 2} \middle/ 2^3 \right.$
(c)
$\left. {5 \choose 2} \middle/ 2^5 \right.$
(d)
$\left. {5 \choose 2} \middle/ 2^4 \right.$
COMP 2804: Discrete Structures II
COMP 2804 Final Exam
Conditional Probability (5.8)
Solution
Let's determine B
$ |B| = 2^4 $
Let's determine $ A = A \cap B $
$ |A| = \binom{5}{2} $
$ Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)} $
$ Pr(A|B) = \frac{\binom{5}{2}}{2^4} $
Contribute