Back

Solution: 2015 Winter Final - 19

Author: Michiel Smid

Question

I flip a fair coin, independently, $n$ times. For each heads, you win \$3, whereas for each tails, you lose \$1. Define the random variable $X$ to be the amount of dollars that you win. What is the expected value of $X$?
(a)
$3n/2$
(b)
$n$
(c)
$2n$
(d)
$n/2$

Solution

  • Let A be the event that you win \$3 by flipping a tails
    $ Pr(A) = \frac{1}{2} $
  • Let B be the event that you lose \$1 by flipping a heads
    $ Pr(B) = \frac{1}{2} $

$ \mathbb{E}(X) = 3 \cdot Pr(A) - 1 \cdot Pr(B) $

$ \mathbb{E}(X) = 3 \cdot \frac{1}{2} + (-1) \cdot \frac{1}{2} $

$ \mathbb{E}(X) = ( \frac{3}{2} - \frac{1}{2} )n $

$ \mathbb{E}(X) = \frac{2}{2} n $

$ \mathbb{E}(X) = n $