Back

Solution: 2015 Winter Final - 22

Author: Michiel Smid

Question

One of Lindsay and Simon is chosen uniformly at random. The person that is chosen wins \$100. Define the random variables $L$ and $S$ as follows:
  • L = the amount that Lindsay wins
and
  • S = the amount that Simon wins.
Which of the following is true?
(a)
$\mathbb{E}(L) = 100$ and $\mathbb{E}(\max(L,S)) = 50$.
(b)
$\mathbb{E}(L) = 100$ and $\mathbb{E}(\max(L,S)) = 100$.
(c)
$\mathbb{E}(L) = 50$ and $\mathbb{E}(\max(L,S)) = 50$.
(d)
$\mathbb{E}(L) = 50$ and $\mathbb{E}(\max(L,S)) = 100$.

Solution

Let’s have a look, I guess

  • To determine $ \mathbb{E}(L) $, we need to determine the probability that Lindsay wins
    $ Pr(L=100) = \frac{1}{2} $
    $ Pr(L=0) = \frac{1}{2} $
    $ \mathbb{E}(L) = 100 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} $
    $ \mathbb{E}(L) = 50 $
  • To determine $ \mathbb{E}(S) $, we need to determine the probability that Simon wins
    $ Pr(S=100) = \frac{1}{2} $
    $ Pr(S=0) = \frac{1}{2} $
    $ \mathbb{E}(S) = 100 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} $
    $ \mathbb{E}(S) = 50 $
  • Let's write out the set for $ \text{max}(L,S) $
    $ \text{max}(L,S) = { (100, 0), (0, 100) } $
    $ \mathbb{\text{max}(L,S)} = 100 \cdot \frac{1}{2} + 100 \cdot \frac{1}{2} $
    $ \mathbb{\text{max}(L,S)} = 100 $