Back

Solution: 2015 Winter Final - 4

Author: Michiel Smid

Question

What is the coefficient of $x^{4}y^{11}$ in the expansion of $(2x - 7y)^{15}$?
(a)
$- {15 \choose 11} \cdot 2^4 \cdot 7^{11}$
(b)
${15 \choose 11} \cdot 2^4 \cdot 7^{11}$
(c)
$- {15 \choose 11} \cdot 2^{11} \cdot 7^4$
(d)
${15 \choose 11} \cdot 2^{11} \cdot 7^4$

Solution

$ {(2x-7y)}^{15} $

$ = \sum_{k=0}^{15} \binom{15}{k} {(2x)}^{n-k} {(-7y)}^{k} $

We only consider $k=11$, as it results in $y^{11}$.

$ = \binom{15}{11} \cdot {(2x)}^{15-11} \cdot {(-7y)}^{11} $

$ = \binom{15}{11} \cdot 2^{4} \cdot {(-7)}^{11} \cdot x^4 \cdot y^{11} $

$ = - \binom{15}{4} \cdot 2^{4} \cdot 7^{11} \cdot x^4 \cdot y^{11} $

Thus, the coefficient of $ x^{4}y^{11} $ in the expansion of $ {(2x-7y)}^{15} $ is $ - \binom{15}{11} \cdot {2}^{4} \cdot {7}^{11} $