$\mathbf{Algorithm}\ \Fib(n)\mathrm{:}$
$\mathbf{if}\ n = 0\ \mathrm{or}\ n = 1$
$\mathbf{then}\ f = n$
$\mathbf{else}\ f = \Fib(n - 1) + \Fib(n - 2)$
$\mathbf{endif};$
$\mathbf{return}\ f$
Let’s draw a recursive tree to find out how many calls there are to $FIB(73)$ when we run $FIB(77)$.
As can be seen, there are 5 calls to $FIB(73)$ when we run $FIB(77)$.