Back

Solution: 2016 Fall Final - 12

Author: Michiel Smid

Question

You roll a fair red die and a fair blue die, independently of each other. Let $r$ be the result of the red die and let $b$ be the result of the blue die. Define the events
  • A = "$r + b = 6$",
  • B = "$b = 4$".
What is $\Pr(B|A)$?
(a)
1/5
(b)
1/3
(c)
1/6
(d)
1/4

Solution

  • Let's determine A
    The possible outcomes are (1,5), (2,4), (3,3), (4,2), (5,1)
    $ |A| = 5 $
    $ Pr(A) = \frac{5}{36} $
  • Let's determine $ A \cap B $
    The possible outcomes are (2,4)
    $ |A \cap B| = 1 $
    $ Pr(A \cap B) = \frac{1}{36} $

$ Pr(B|A) = \frac{Pr(A \cap B)}{Pr(A)} $

$ Pr(B|A) = \frac{ \frac{1}{36}}{ \frac{5}{36}} $

$ Pr(B|A) = \frac{1}{5} $