Let $n \geq 2$ be the number of students who are writing this exam. Each of these students has a
		uniformly random birthday, which is independent of the birthdays of the other students. We ignore
		leap years; thus, the year has 365 days. Define the event
		
  -  A = "at least two students have their birthday on December 14".
 
		
		What is $\Pr(A)$?
      
(a)
 $1 - {n \choose 2} \cdot \left( \frac{1}{365} \right)^2 \cdot \left( \frac{364}{365} \right)^{n-2}$
   
(b)
 ${\sum_{k=2}^{n}} {n \choose k} \cdot \left( \frac{1}{365} \right)^k$
   
(c)
 $1 - \left( \frac{364}{365} \right)^n - n \cdot \frac{1}{365} \cdot \left( \frac{364}{365} \right)^{n-1}$
   
(d)
 ${n \choose 2} \cdot \left( \frac{1}{365} \right)^2 \cdot \left( \frac{364}{365} \right)^{n-2}$