Back

Solution: 2016 Fall Final - 23

Author: Michiel Smid

Question

Consider the set $S = \{1,2,3,...,10\}$. You choose a uniformly random element $z$ in $S$. Define the random variables $$ X = \begin{cases} 0\; \ \text{if \(z\) is even}, \\ 1\; \ \text{if \(z\) is odd} \end{cases} $$ and $$ Y = \begin{cases} 0\; \ \mathrm{if}\ z \in \{1,2\}, \\ 1\; \ \mathrm{if}\ z \in \{3,4,5,6\}, \\ 2\; \ \mathrm{if}\ z \in \{7,8,9,10\}. \end{cases} $$ Which of the following is true?
(a)
The random variables $X$ and $Y$ are not independent.
(b)
None of the above.
(c)
The random variables $X$ and $Y$ are independent.

Solution

For questions like these, we can answer by checking for a value $i$ if the following is true: $ Pr(X=i \cap Y=i) = Pr(X=i) \cdot Pr(Y=i) $

  • Let's determine $ Pr(X=1) $
    Since half the numbers are odd,
    $ Pr(X=1) = \frac{5}{10} $
    $ Pr(X=1) = \frac{1}{2} $
  • Let's determine $ Pr(Y=1) $
    Since 4 of the numbers are in the set {3, 4, 5, 6},
    $ Pr(Y=1) = \frac{4}{10} $
    $ Pr(Y=1) = \frac{2}{5} $
  • Let's determine $ Pr(X=1 \cap Y=1) $
    The values 3 and 5 are the only values that are both odd and in the set {3, 4, 5, 6}
    $ Pr(X=1 \cap Y=1) = \frac{2}{10} $
    $ Pr(X=1 \cap Y=1) = \frac{1}{5} $

$ Pr(X=1 \cap Y=1) = Pr(X=1) \cdot Pr(Y=1) $

$ \frac{1}{5} = \frac{1}{2} \cdot \frac{2}{5} $

$ \frac{1}{5} = \frac{1}{5} $

Since the equation is true, X and Y are independent.