Solution: 2016 Fall Final - 8 
 Author: Michiel Smid   Question
    
Consider the following recursive function:
		
  -  f(0) = $1$,
 
  -  f(n) = $\frac{5}{n} \cdot f(n - 1)\; \ \text{for all}$ $\mathrm{integers}\ n \geq 1$.
 
		
		Which of the following is true for all $n \geq 0$?
      
(a)
 $f(n) = \frac{5^{n}}{(n+1)!}$
   
(b)
 $f(n) = \frac{5}{n!}$
   
(c)
 $f(n) = \frac{5^{n+1}}{n!}$
   
(d)
 $f(n) = \frac{5^{n}}{n!}$
           Solution
  Let’s calculate $f(1)$ and $f(2)$
$ f(1) = \frac{5}{1} \cdot f(0) = 5 \cdot 1 = 5 $
$ f(2) = \frac{5}{2} \cdot f(1) = \frac{5}{2} \cdot 5 = \frac{25}{2} $
    -  $ f(n) = \frac{5}{n!} $ 
 
    $ f(1) = \frac{5}{1!} = 5 $ 
 
    $ f(2) = \frac{5}{2!} = \frac{5}{2} $
     -  $ f(n) = \frac{5^{n}}{n!} $ 
 
    $ f(1) = \frac{5^{1}}{1!} = 5 $ 
 
    $ f(2) = \frac{5^{2}}{2!} = \frac{25}{2} $
     -  $ f(n) = \frac{5^{n}}{(n+1)!} $ 
 
    $ f(1) = \frac{5^{1}}{2!} = \frac{5}{2} $ 
 
    $ f(2) = \frac{5^{2}}{3!} = \frac{25}{6} $
     -  $ f(n) = \frac{5^{n+1}}{n!} $ 
 
    $ f(1) = \frac{5^{1+1}}{1!} = 25 $ 
 
    $ f(2) = \frac{5^{2+1}}{2!} = \frac{125}{2} $
 
Since b is the only one that has the correct function, it is the answer