Back

Solution: 2017 Fall Final - 18

Author: Michiel Smid

Question

You flip a fair red coin once, and you flip a fair blue coin once, independently of each other. Define the random variables
$X = \bigg\{$ $1\ $ if the red coin flip resulted in heads$,$
$0\ $ if the red coin flip resulted in tails$,$
$Y = \bigg\{$ $1\ $ if the blue coin flip resulted in heads$,$
$0\ $ if the blue coin flip resulted in tails$,$
and
  • Z = $\max(X,Y).$
What is the expected value $\mathbb{E}(Z)$ of the random variable $Z$?
(a)
1/4
(b)
1
(c)
3/4
(d)
1/2

Solution

  • 10
  • 11
  • 00
  • 01

Let’s find the individual Expected probabilities for Z

$ \mathbb{E}(X) = 1 \cdot Pr(X=1 \cap Y=0) + 1 \cdot (X=1 \cap Y=1) + 0 \cdot Pr(X=0 \cap Y=0) + 1 \cdot Pr(X=0 \cap Y=1) $

$ \mathbb{E}(X) = 1 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} $

$ \mathbb{E}(X) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} $

$ \mathbb{E}(X) = \frac{3}{4} $