$X = \bigg\{$ | $1\ $ | if the red coin flip resulted in heads$,$ |
$0\ $ | if the red coin flip resulted in tails$,$ | |
$Y = \bigg\{$ | $1\ $ | if the blue coin flip resulted in heads$,$ |
$0\ $ | if the blue coin flip resulted in tails$,$ |
Let’s find the individual Expected probabilities for Z
$ \mathbb{E}(X) = 1 \cdot Pr(X=1 \cap Y=0) + 1 \cdot (X=1 \cap Y=1) + 0 \cdot Pr(X=0 \cap Y=0) + 1 \cdot Pr(X=0 \cap Y=1) $
$ \mathbb{E}(X) = 1 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} $
$ \mathbb{E}(X) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} $
$ \mathbb{E}(X) = \frac{3}{4} $