Let’s make some statements and see what we can get
$ Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)} $
$ Pr(B|A) = \frac{Pr(A \cap B)}{Pr(A)} $
$ \frac{Pr(A \cap B)}{Pr(A)} = \frac{Pr(A \cap B)}{Pr(B)} $
$ Pr(A) = Pr(B) $
$ Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B) = 1 $
$ 2Pr(A) - Pr(A \cap B) = 1 $
For the above statement to be true, $ Pr(A) > \frac{1}{2} $ because $ Pr(A \cap B) > 0 $
To illustrate, let’s use some values
$ Pr(A) = 0.5 $ and $ Pr(A \cap B) = 0.25 $
$ 2 \cdot 0.5 - 0.25 = 1 $
$ 1 - 0.25 = 1 $
$ 0.75 = 1 $
As can be seen, $ Pr(A) > \frac{1}{2} $ needs to be true in order to counter the fact that $ Pr(A \cap B) > 0 $