Back

Solution: 2017 Winter Final - 6

Author: Michiel Smid

Question

Consider a group of 100 students. In this group,
  • 63 students like beer,
  • 71 students like cider, and
  • 25 students do not like beer and do not like cider.
How many students like beer and cider?
(a)
60
(b)
58
(c)
57
(d)
59

Solution

  • Let B be the event that a student likes beer
    $ |B| = 63 $
  • Let C be the event that a student likes cider
    $ |C| = 71 $
  • Let's determine $ \overline{B} \cap \overline{C} $
    $ | \overline{B} \cap \overline{C} | = 25 $

Now, let’s determine $ B \cup C $

$ B \cup C = 100 - | \overline{B} \cap \overline{C} | $

$ B \cup C = 100 - 25 $

$ B \cup C = 75 $

Finally, we can determine $ B \cap C $

$ B \cup C = |B| + |C| - |B \cap C| $

$ 75 = 63 + 71 - |B \cap C| $

$ 75 = 134 - |B \cap C| $

$ |B \cap C| = 59 $