Let’s see some products
Let $k$ be the number of 1s in this bitstring.
There are n positions and the probability of getting a 1 is $ \frac{1}{4} $
$X \sim\text{Binomial}(n, 1/4)$
$ Pr(X=k) = \binom{n}{k} {\left( \frac{1}{4} \right)}^{k} {\left( \frac{3}{4} \right)}^{n-k} $
$ Pr(X=k) = \binom{n}{k} \frac{1^k \cdot 3^{n-k}}{4^n} $
$ Pr(X=k) = \binom{n}{k} \frac{3^{n-k}}{4^n} $