The equation is $ Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B) $
Since they’re independent, $ Pr(A \cap B) = Pr(A) \cdot Pr(B) $
$ Pr(A \cap B) = \frac{1}{4} \cdot \frac{2}{3} $
$ Pr(A \cap B) = \frac{2}{12} $
$ Pr(A \cap B) = \frac{1}{6} $
Now, we can find $ Pr(A \cup B) $
$ Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B) $
$ Pr(A \cup B) = \frac{1}{4} + \frac{2}{3} - \frac{1}{6} $
$ Pr(A \cup B) = \frac{3}{12} + \frac{8}{12} - \frac{2}{12} $
$ Pr(A \cup B) = \frac{9}{12} $
$ Pr(A \cup B) = \frac{3}{4} $