Brute force it with all posibilities
$ { (00), (01), (02), (10), (11), (12), (20), (21), (22) } $
So straight up, there are 9 possibilities and the probability of each ordered pair has a chance of occuring with $ \frac{1}{9} $
In the order that the orered pairs appear above, I’m gonna write down the max of each pair along with the probability of that pair occuring
$ \frac{1}{9} \cdot 0 + \frac{1}{9} \cdot 1 + \frac{1}{9} \cdot 2 + \frac{1}{9} \cdot 1 + \frac{1}{9} \cdot 1 + \frac{1}{9} \cdot 2 + \frac{1}{9} \cdot 2 + \frac{1}{9} \cdot 2 + \frac{1}{9} \cdot 2 $
$ = \frac{1}{9} ( 0 + 1 + 2 + 1 + 1 + 2 + 2 + 2 + 2 ) $
$ = \frac{1}{9} ( 13 ) $
$ = \frac{13}{9} $