First, we choose which 3 of the 18 rolls are 5: $ \binom{18}{3} $
We also need to calculate the prbability of rolling a 5 exactly 3 times: ${( \frac{1}{6})}^3 $
We also need to calculate the probability of not rolling a 5 exactly 15 times: ${( \frac{5}{6})}^{15} $
$ \binom{18}{3} \cdot {( \frac{1}{6})}^3 \cdot {( \frac{5}{6})}^{15} $
$ = \binom{18}{3} \cdot ( \frac{1^3}{6^3}) \cdot ( \frac{5^{15}}{6^{15}}) $
$ = \binom{18}{3} \cdot \frac{5^{15}}{6^{18}} $