The difference in string $a-b$ is non-zero at each position only if $a_i$ is 1 and $b_i$ is 0 or $a_i$ is 0 and $b_i$ is 1, for all $1 \leq i \leq 77$
Let $X_i$ be 1 if $a_i$ and $b_i$ are different and 0 otherwise
$ Pr(X_i = 1) = \frac{1}{4} \cdot \frac{3}{4} + \frac{3}{4} \cdot \frac{1}{4} $
$ Pr(X_i = 1) = \frac{3}{16} + \frac{3}{16} $
$ Pr(X_i = 1) = \frac{6}{16} $
$ Pr(X_i = 1) = \frac{3}{8} $
The probability that each element in the string is non-zero is the probability that each element is different
$ \frac{3}{8} \cdot \frac{3}{8} \cdot \text{…} \cdot \frac{3}{8} $
$ = {( \frac{3}{8})}^{77} $