To prove that this statement is false, we need to provide a counterexample:
Let X, Y, Z all represent the random variables where $X, Y, Z = 1$ if a coin toss is heads and $X, Y, Z = 0$ if a coin toss is tails.
The expected value of $X, Y, Z$ in this case (as\suming that $\frac{1}{2}$ chance of hitting heads or tails) is: $E(X) = E(Y) = E(Z) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$.
This means that the $min(E(X), E(Y), E(Z) = min( \frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = \frac{1}{2}$ is $\frac{1}{2}$.
For the LHS, we need to calculate the expected value for $min(X, Y, Z)$. There are only two possible values in this case: $min(X, Y, Z) = 0$ and $min(X, Y, Z) = 1$
Since $E(min(X, Y, Z)) = \frac{1}{8}$ and $min(E(X), E(Y), E(Z)) = \frac{1}{2}$, the two are not the same, so the statement is false.