Back

Solution: 2019 Fall Final - 15

Author: Michiel Smid

Question

A bowl contains 5 blue balls and 4 red balls. We choose 2 balls uniformly at random. Define the events
  • A = "both balls are red",
  • B = "both balls have the same color".
What is the conditional probability $\Pr(A|B)$?
(a)
$\frac{{5 \choose 2} + {4 \choose 2}}{{4 \choose 2}}$
(b)
$\frac{{4 \choose 2}}{{5 \choose 2} \cdot {4 \choose 2}}$
(c)
$\frac{{4 \choose 2}}{{5 \choose 2} + {4 \choose 2}}$
(d)
$\frac{{4 \choose 2}}{{9 \choose 2}}$

Solution

  • Let's determine $B$
    We can choose 2 of the blue balls: $ \binom{5}{2} $
    We can also choose 2 of the red balls: $ \binom{4}{2} $
    $ |B| = \binom{5}{2} + \binom{4}{2} = 10 + 6 = 16 $
  • Let's determine $ A \cap B $
    We can choose 2 of the red balls: $ \binom{4}{2} $
    $ |A \cap B| = \binom{4}{2} = 6 $

Now, let God do the rest

$ Pr(A|B) = \frac{|A \cap B|}{|B|} = $

$ Pr(A|B) = \frac{ \binom{5}{2} + \binom{4}{2} }{ \binom{4}{2} } $