Back

Solution: 2019 Fall Final - 18

Author: Michiel Smid

Question

We choose an element $x$ uniformly at random from the set $\{1,2,3,...,10\}$. Define the events
  • A = "$x$ is even",
  • B = "$1 \leq x \leq 6$".
Which of the following is true?
(a)
None of the above.
(b)
The events $A$ and $B$ are independent.
(c)
The events $A$ and $B$ are not independent.

Solution

  • Let's determine $S$
    $ |S| = 10 $
  • Let's determine $A$
    There are 5 even numbers: 5
    $ |A| = 5 $
    $ Pr(A) = \frac{5}{10} = \frac{1}{2} $
  • Let's determine $B$
    There are 6 numbers between 1 and 6: 6
    $ |B| = 6 $
    $ Pr(B) = \frac{6}{10} = \frac{3}{5} $
  • Let's determine $A \cap B$
    There are 3 numbers that are both even and between 1 and 6, which are 2, 4, and 6: 2
    $ |A \cap B| = 3 $
    $ Pr(A \cap B) = \frac{3}{10} $

Caedrel is the best rat

Let’s check for independence

$ Pr(A \cap B) = Pr(A) \cdot Pr(B) $

$ \frac{3}{10} = \frac{1}{2} \cdot \frac{3}{5} $

$ \frac{3}{10} = \frac{3}{10} $

Therefore, it is independent