Back

Solution: 2019 Winter Final - 10

Author: Michiel Smid

Question

The function $f : \mathbb{N} \rightarrow \mathbb{N}$ is recursively defined as follows: $$ \begin{align} f(0) &= 2 \\ f(n) &= 3 \cdot f(n - 1) + 1, \text{ if } n \geq 1 \end{align} $$ Which of the following is true for all integers $n \geq 0$?
(a)
$f(n) = \frac{5}{2} \cdot 3^n - 1$
(b)
$f(n) = \frac{3}{2} \cdot 3^n - \frac{1}{2}$
(c)
$f(n) = \frac{5}{2} \cdot 3^n - \frac{1}{2}$
(d)
None of the above.

Solution

  1. Let’s calculat ethe first few values of $f(n)$ to see if we can find a pattern:

    $ f(1) = 3 \cdot f(0) + 1 = 3 \cdot 2 + 1 = 7 $

  2. Let’s see how the functions behave

    • $f(n) = \frac{5}{2} \cdot 3^n - 1$
      $ f(1) = \frac{5}{2} \cdot 3^1 - 1 = \frac{5}{2} \cdot 3 - 1 = 7.5 - 1 = 6.5 $
    • $f(n) = \frac{3}{2} \cdot 3^n - \frac{1}{2}$
      $ f(1) = \frac{3}{2} \cdot 3^1 - \frac{1}{2} = \frac{3}{2} \cdot 3 - \frac{1}{2} = 4.5 - 0.5 = 4 $
    • $f(n) = \frac{5}{2} \cdot 3^n - \frac{1}{2}$
      $ f(1) = \frac{5}{2} \cdot 3^1 - \frac{1}{2} = \frac{5}{2} \cdot 3 - \frac{1}{2} = 7.5 - 0.5 = 7 $

    So the correct answer is the third option. $f(n) = \frac{5}{2} \cdot 3^n - \frac{1}{2}$