Let’s just try to find out as much as possible
Find $\Pr(B)$
$\Pr(B) = 1 - \Pr(\overline{B}) = 1 - \frac{2}{3} = \frac{1}{3}$
Determine $A \cap B$
Since $A$ and $B$ are independent, $\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$
$\Pr(A \cap B) = \frac{1}{4} \cdot \frac{1}{3} = \frac{1}{12}$
Determine $\Pr(A \cup B)$
$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$
$\Pr(A \cup B) = \frac{1}{4} + \frac{1}{3} - \frac{1}{12}$
$\Pr(A \cup B) = \frac{3}{12} + \frac{4}{12} - \frac{1}{12}$
$\Pr(A \cup B) = \frac{6}{12} $
$\Pr(A \cup B) = \frac{1}{2} $