Determine probability of $X_i$
Let $X_i$ be the 1 if $c_i \cdot c_{i + 1}$ is odd
$X_i$ is odd with probability $\frac{4}{9}$
Profit
$ \mathbb{E}(X) = \sum_{i=1}^{n-1} \mathbb{E}(X_i) $
$ \mathbb{E}(X) = \sum_{i=1}^{n-1} \frac{4}{9} $
$ \mathbb{E}(X) = \frac{4}{9} \cdot (n-1) $