Back

Solution: 2019 Winter Final - 3

Author: Michiel Smid

Question

Consider a set $S$ consisting of 25 beer bottles $b_1,b_2,...,b_{25}$ and 30 cider bottles $c_1,c_2,...,c_{30}$. How many 10-element subsets of $S$ contain at least 2 beer bottles?
(a)
${55 \choose 10} - {30 \choose 10} - 25 \cdot {30 \choose 9}$
(b)
${55 \choose 10} - {30 \choose 10} - 25 \cdot {29 \choose 9}$
(c)
${55 \choose 10} - {30 \choose 10} - 25 \cdot {30 \choose 10}$
(d)
${55 \choose 10} - {30 \choose 10} - {30 \choose 9}$

Solution

  1. Find S

    Let S be the set of all possible 10-element subsets of $S$

    We choose 10 bottles from the total of 55 bottles: $\binom{55}{10}$

  2. Find A

    Let A be the set of all possible 10-element subsets of $S$ that contain 0 beer bottles

    We choose 10 bottles from the 30 cider bottles: $\binom{30}{10}$

  3. Find B

    Let B be the set of all possible 10-element subsets of $S$ that contain 1 beer bottle

    We choose 1 beer bottle from the 25 beer bottles and 9 cider bottles from the 30 cider bottles: $\binom{25}{1} \cdot \binom{30}{9}$

  4. Profit

    $ |S| - |A| - |B| $

    $= \binom{55}{10} - \binom{30}{10} - \binom{25}{1} \cdot \binom{30}{9} $

    $ = \binom{55}{10} - \binom{30}{10} - 25 \cdot \binom{30}{9} $