Back

Solution: 2019 Winter Final - 6

Author: Michiel Smid

Question

What is the coefficient of $x^{20}y^{35}$ in the expansion of $(5x - 3y)^{55}$?
(a)
$-{55 \choose 35} \cdot 5^{20} \cdot 3^{35}$
(b)
${55 \choose 35} \cdot 5^{20} \cdot 3^{35}$
(c)
${55 \choose 20} \cdot 5^{35} \cdot 3^{20}$
(d)
$-{55 \choose 20} \cdot 5^{35} \cdot 3^{20}$

Solution

What is the coefficient of $x^{20}y^{35}$ in the expansion of $(5x - 3y)^{55}$?

$(5x - 3y)^{55}$

$= \sum_{k=0}^{55} \binom{55}{k} (5x)^{k} (-3y)^{55-k}$

$= \binom{55}{20} (5x)^{20} (-3y)^{35}$

$= \binom{55}{20} 5^{20} x^{20} (-3)^{35} y^{35}$

$= - \binom{55}{20} 5^{20} 3^{35} x^{20} y^{35}$

Thus, the coefficient of $x^{20}y^{35}$ is $- \binom{55}{20} 5^{20} 3^{35}$.