Back

Question: 2014 Fall Final - 10

Author: Michiel Smid
Consider the following recursive function:
$f(0) = $ $-17,$
$f(n) = $ $f(n - 1) + 8n - 2\; \ \text{for all}$ $\text{integers}\ n \geq 1.$
Which of the following is true?
(a)
for all $n \geq 0$: $f(n) = 4n^{2} - 2n - 17$
(b)
for all $n \geq 0$: $f(n) = 3n^{2} + n - 17$
(c)
for all $n \geq 0$: $f(n) = 3n^{2} - n - 17$
(d)
for all $n \geq 0$: $f(n) = 4n^{2} + 2n - 17$