Back

Question: 2016 Fall Final - 23

Author: Michiel Smid
Consider the set $S = \{1,2,3,...,10\}$. You choose a uniformly random element $z$ in $S$. Define the random variables $$ X = \begin{cases} 0\; \ \text{if \(z\) is even}, \\ 1\; \ \text{if \(z\) is odd} \end{cases} $$ and $$ Y = \begin{cases} 0\; \ \mathrm{if}\ z \in \{1,2\}, \\ 1\; \ \mathrm{if}\ z \in \{3,4,5,6\}, \\ 2\; \ \mathrm{if}\ z \in \{7,8,9,10\}. \end{cases} $$ Which of the following is true?
(a)
The random variables $X$ and $Y$ are independent.
(b)
None of the above.
(c)
The random variables $X$ and $Y$ are not independent.