Home
Evaluations
Tags
Lectures
Sandbox
About
Contribute
Evaluations
Tags
Lectures
About
Back
Question:
2016 Fall Midterm - 10
Author: Michiel Smid
The function $f : \mathbb{N} \rightarrow \mathbb{R}$ is defined by $$ \begin{align} f(0) &= 7, \\ f(n) &= \frac{n}{3} \cdot f(n - 1)\; \ \mathrm{for}\ n \geq 1. \end{align} $$ What is $f(n)$?
(a)
$f(n) = 7^n \cdot \frac{(n + 1)!}{3^n}$
(b)
$f(n) = 7^n \cdot \frac{n!}{3^n}$
(c)
$f(n) = 7 \cdot \frac{n!}{3^n}$
(d)
$f(n) = 7 \cdot \frac{(n + 1)!}{3^n}$
COMP 2804: Discrete Structures II
COMP 2804 Midterm
Recursive Functions (4.1)