Back

Question: 2016 Fall Midterm - 10

Author: Michiel Smid
The function $f : \mathbb{N} \rightarrow \mathbb{R}$ is defined by $$ \begin{align} f(0) &= 7, \\ f(n) &= \frac{n}{3} \cdot f(n - 1)\; \ \mathrm{for}\ n \geq 1. \end{align} $$ What is $f(n)$?
(a)
$f(n) = 7^n \cdot \frac{(n + 1)!}{3^n}$
(b)
$f(n) = 7 \cdot \frac{n!}{3^n}$
(c)
$f(n) = 7 \cdot \frac{(n + 1)!}{3^n}$
(d)
$f(n) = 7^n \cdot \frac{n!}{3^n}$