$\newcommand{\ElisaDrinksCider}{{\rm E {\scriptsize LISA} D {\scriptsize RINKS} C {\scriptsize IDER}}}
\newcommand{\elsesp}{\phantom{\mathbf{else}\ }}$
Consider the following recursive algorithm $\ElisaDrinksCider$, which takes as input an integer
$n \geq 1$, which is a power of 2:
$\mathbf{Algorithm} \text{ ElisaDrinksCider}(n):$
$\quad \mathbf{if}\ n = 1\ \mathbf{then}$
$\quad \quad \text{order Fibonachos}$
$\quad \mathbf{else}$
$\quad \quad \ElisaDrinksCider(n / 2);$
$\quad \quad \text{drink n bottles of cider};$
$\quad \quad \ElisaDrinksCider(n / 2)$
$\quad \mathbf{endif}$
For $n$ a power of 2, let $C(n)$ be the total number of bottles of cider that you drink when running algorithm
$\ElisaDrinksCider(n)$. Which of the following is true for any $n \geq 1$ that is a power of 2?
(n.b., $\log$ denotes the base-2 logarithm)